Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6687): 1135-1141, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452078

RESUMO

The deep ocean is the last natural biodiversity refuge from the reach of human activities. Deepwater sharks and rays are among the most sensitive marine vertebrates to overexploitation. One-third of threatened deepwater sharks are targeted, and half the species targeted for the international liver-oil trade are threatened with extinction. Steep population declines cannot be easily reversed owing to long generation lengths, low recovery potentials, and the near absence of management. Depth and spatial limits to fishing activity could improve conservation when implemented alongside catch regulations, bycatch mitigation, and international trade regulation. Deepwater sharks and rays require immediate trade and fishing regulations to prevent irreversible defaunation and promote recovery of this threatened megafauna group.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Caça , Tubarões , Rajidae , Animais , Humanos , Internacionalidade , Carne , Óleos de Peixe , Biodiversidade , Oceanos e Mares , Risco
2.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284655

RESUMO

Circular dichroism (CD) of materials, difference in absorbance of left- and right-circularly polarized light, is a standard measure of chirality. Detection of the chirality for individual molecules is a frontier in analytical chemistry and optical science. The usage of a superchiral electromagnetic field near metallic structure is one promising way because it boosts the molecular far-field CD signal. However, it is still elusive as to how such a field actually interacts with the molecules. The cause is that the distribution of the electric field vector is unclear in the vicinity of the metal surface. In particular, it is difficult to directly measure the localized field, e.g., using aperture-type scanning near-field optical microscope. Here, we calculate the three-dimensional (3D) electric field vector, including the longitudinal field, and reveal the whole figure of the near-field CD on a two-dimensional (2D) plane just above the metal surface. Moreover, we propose a method to measure the near-field CD of the whole superchiral field by photo-induced force microscopy (PiFM), where the optical force distribution is mapped in a scanning 2D plane. We numerically demonstrate that, although the presence of the metallic probe tip affects the 3D electric field distribution, the PiFM is sufficiently capable to evaluate the superchiral field. Unveiling the whole figure of near-field is significantly beneficial in obtaining rich information of single molecules with multiple orientations and in analyzing the boosted far-field CD signals.

3.
ACS Nano ; 18(2): 1724-1732, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157420

RESUMO

Visualizing the optical response of individual molecules is a long-standing goal in catalysis, molecular nanotechnology, and biotechnology. The molecular response is dominated not only by the electronic states in their isolated environment but also by neighboring molecules and the substrate. Information about the transfer of energy and charge in real environments is essential for the design of the desired molecular functions. However, visualizing these factors with spatial resolution beyond the molecular scale has been challenging. Here, by combining photoinduced force microscopy and Kelvin probe force microscopy, we have mapped the photoinduced force in a pentacene bilayer with a spatial resolution of 0.6 nm and observed its "multipole excitation". We identified the excitation as the result of energy and charge transfer between the molecules and to the Ag substrate. These findings can be achieved only by combining microscopy techniques to simultaneously visualize the optical response of the molecules and the charge transfer between the neighboring environments. Our approach and findings provide insights into designing molecular functions by considering the optical response at each step of layering molecules.

4.
Opt Express ; 31(9): 13708-13723, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157253

RESUMO

In this study, we theoretically analyzed the optical force acting on single chiral molecules in the plasmon field induced by metallic nanostructures. Using the extended discrete dipole approximation, we quantitatively examined the optical response of single chiral molecules in the localized plasmon by numerically analyzing the internal polarization structure of the molecules obtained from quantum chemical calculations, without phenomenological treatment. We evaluated the chiral gradient force due to the optical chirality gradient of the superchiral field near the metallic nanostructures for chiral molecules. Our calculation method can be used to evaluate the molecular-orientation dependence and rotational torque by considering the chiral spatial structure inside the molecules. We theoretically showed that the superchiral field induced by chiral plasmonic nanostructures can be used to selectively optically capture the enantiomers of a single chiral molecule.

5.
ACS Nano ; 17(9): 8315-8323, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37083316

RESUMO

Modal strong coupling between localized surface plasmon resonance and a Fabry-Pérot nanocavity has been studied to improve the quantum efficiency of artificial photosynthesis. In this research, we employed Au nanodisk/titanium dioxide/Au film modal strong coupling structures to investigate the mechanism of quantum efficiency enhancement. We found that the quantum coherence within the structures enhances the apparent quantum efficiency of the hot-electron injection from the Au nanodisks to the titanium dioxide layer. Under near-field mapping using photoemission electron microscopy, the existence of quantum coherence was directly observed. Furthermore, the coherence area was quantitatively evaluated by analyzing the relationship between the splitting energy and the particle number density of the Au nanodisks. This quantum-coherence-enhanced hot-electron injection is supported by our theoretical model. Based on these results, applying quantum coherence to photochemical reaction systems is expected to effectively enhance reaction efficiencies.

6.
Opt Express ; 31(3): 3415-3426, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785335

RESUMO

Near-field images of molecules provide information about their excited orbitals, giving rise to photonic and chemical functions. Such information is crucial to the elucidation of the full potential of molecules as components in functional materials and devices at the nanoscale. However, direct imaging inside single molecules with a complex structure in the near-field is still challenging because it requires in situ observation at a higher resolution than the molecular scale. Here, using a proven theoretical method that has demonstrated sub-nanoscale resolution based on photoinduced force microscopy (PiFM) experiment [Nat. Commun.12, 3865 (2021)10.1038/s41467-021-24136-2], we propose an approach to obtaining the near-field imaging with spatial patterns of electronic transitions of single molecules. We use an extended discrete dipole approximation method that incorporates microscopic nonlocal optical response of molecules and demonstrate that PiFM can visualize circular-dichroism signal patterns at sub-nanometer scale for both optically allowed and forbidden transitions. The result will open the possibility for the direct observation of complex spatial patterns of electronic transitions in a single molecule, providing insight into the optical function of single molecules and helping realize new functional materials and devices.

7.
Opt Express ; 31(3): 3804-3820, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785364

RESUMO

The optical binding of many particles has the potential to achieve the wide-area formation of a "crystal" of small materials. Unlike conventional optical binding, where the entire assembly of targeted particles is directly irradiated with light, if remote particles can be indirectly manipulated using a single trapped particle through optical binding, the degrees of freedom to create ordered structures can be enhanced. In this study, we theoretically investigate the dynamics of the assembly of gold nanoparticles that are manipulated using a single trapped particle by a focused laser. We demonstrate the rotational motion of particles through an indirect optical force and analyze it in terms of spin-orbit coupling and the angular momentum generation of light. The rotational direction of bound particles can be switched by the numerical aperture. These results pave the way for creating and manipulating ordered structures with a wide area and controlling local properties using scanning laser beams.

8.
Opt Express ; 30(10): 17490-17516, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221571

RESUMO

Compared with manipulation of microparticles with optical tweezers and control of atomic motion with atom cooling, the manipulation of nanoscale objects is challenging because light exerts a significantly weaker force on nanoparticles than on microparticles. The complex interaction of nanoparticles with the environmental solvent media adds to this challenge. In recent years, optical manipulation using electronic resonance effects has garnered interest because it has enabled researchers to enhance the force as well as sort nanoparticles by their quantum mechanical properties. Especially, a precise observation of the motion of nanoparticles irradiated by resonant light enables the precise measurement of the material parameters of single nanoparticles. Conventional spectroscopic methods of measurement are based on indirect processes involving energy dissipation, such as thermal dissipation and light scattering. This study proposes a theoretical method to measure the nonlinear optical constant based on the optical force. The nonlinear susceptibility of single nanoparticles can be directly measured by evaluating the transportation distance of particles through pure momentum exchange. We extrapolate an experimentally verified method of measuring the linear absorption coefficient of single nanoparticles by the optical force to determine the nonlinear absorption coefficient. To this end, we simulate the third-order nonlinear susceptibility of the target particles with the kinetic analysis of nanoparticles at the solid-liquid interface incorporating the Brownian motion. The results show that optical manipulation can be used as nonlinear optical spectroscopy utilizing direct exchange of momentum. To the best of our knowledge, this is currently the only way to measure the nonlinear coefficient of individual single nanoparticles.

9.
Sci Adv ; 8(38): eabq2604, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36129977

RESUMO

When a chiral nanoparticle is optically trapped using a circularly polarized laser beam, a circular polarization (CP)-dependent gradient force can be induced on the particle. We investigated the CP-dependent gradient force exerted on three-dimensional chiral nanoparticles. The experimental results showed that the gradient force depended on the handedness of the CP of the trapping light and the particle chirality. The analysis revealed that the spectral features of the CP handedness-dependent gradient force are influenced not only by the real part of the refractive index but also by the electromagnetic field perturbed by the chiral particle resonant with the incident light. This is in sharp contrast to the well-known behavior of the gradient force, which is governed by the real part of the refractive index. The extended aspect of the chiral optical force obtained here can provide novel methodologies on chirality sensing, manipulation, separation, enantioselective biological reactions, and other fields.

10.
Opt Express ; 29(23): 38824-38840, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808926

RESUMO

Optical manipulation, exemplified by Ashkin's optical tweezers, is a promising technique in the fields of bioscience and chemistry, as it enables the non-destructive and non-contact selective transport or manipulation of small particles. To realize the separation of chiral molecules, several researchers have reported on the use of light and discussed feasibility of selection. Although the separation of micrometer-sized chiral molecules has been experimentally demonstrated, the separation of nanometer-sized chiral molecules, which are considerably smaller than the wavelength of light, remains challenging. Therefore, we formulated an optical force under electronic resonance to enhance the optical force and enable selective manipulation. In particular, we incorporated the microscopic structures of molecular dipoles into the nonlocal optical response theory. The analytical expression of optical force could clarify the mechanism of selection exertion of the resonant optical force on chiral molecules. Furthermore, we quantitatively evaluated the light intensity and light exposure time required to separate a single molecule in a solvent. The results can facilitate the design of future schemes for the selective optical manipulation of chiral molecules.

11.
Science ; 373(6550): 95-98, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210883

RESUMO

Ways to characterize and control excited states at the single-molecule and atomic levels are needed to exploit excitation-triggered energy-conversion processes. Here, we present a single-molecule spectroscopic method with micro-electron volt energy and submolecular-spatial resolution using laser driving of nanocavity plasmons to induce molecular luminescence in scanning tunneling microscopy. This tunable and monochromatic nanoprobe allows state-selective characterization of the energy levels and linewidths of individual electronic and vibrational quantum states of a single molecule. Moreover, we demonstrate that the energy levels of the states can be finely tuned by using the Stark effect and plasmon-exciton coupling in the tunneling junction. Our technique and findings open a route to the creation of designed energy-converting functions by using tuned energy levels of molecular systems.

12.
Nat Commun ; 12(1): 3865, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162845

RESUMO

Three-dimensional (3D) information of the optical response in the nanometre scale is important in the field of nanophotonics science. Using photoinduced force microscopy (PiFM), we can visualize the nano-scale optical field using the optical gradient force between the tip and sample. Here, we demonstrate 3D photoinduced force field visualization around a quantum dot in the single-nanometre spatial resolution with heterodyne frequency modulation technique, using which, the effect of the photothermal expansion of the tip and sample in the ultra-high vacuum condition can be avoided. The obtained 3D mapping shows the spatially localized photoinduced interaction potential and force field vectors in the single nano-scale for composite quantum dots with photocatalytic activity. Furthermore, the spatial resolution of PiFM imaging achieved is ~0.7 nm. The single-nanometer scale photoinduced field visualization is crucial for applications such as photo catalysts, optical functional devices, and optical manipulation.

13.
Sci Adv ; 7(3)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523883

RESUMO

Optical trapping and manipulation have been widely applied to biological systems, and their cutting-edge techniques are creating current trends in nanomaterial sciences. The resonant absorption of materials induces not only the energy transfer from photons to quantum mechanical motion of electrons but also the momentum transfer between them, resulting in dissipative optical forces that drive the macroscopic mechanical motion of the particles. However, optical manipulation, according to the quantum mechanical properties of individual nanoparticles, is still challenging. Here, we demonstrate selective transportation of nanodiamonds with and without nitrogen-vacancy centers by balancing resonant absorption and scattering forces induced by two different-colored lasers counterpropagating along a nanofiber. Furthermore, we propose a methodology for precisely determining the absorption cross sections for single nanoparticles by monitoring the optically driven motion, which is called as "optical force spectroscopy." This method provides a novel direction in optical manipulation technology toward development of functional nanomaterials and quantum devices.

14.
Zootaxa ; 4861(4): zootaxa.4861.4.3, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33311206

RESUMO

A new species of softnose skate (Arhynchobatidae), Bathyraja sexoculata Misawa, Orlov, Orlova, Gordeev and Ishihara is described on the basis of five specimens collected from off the east coast of Simushir Island, Kuril Islands, located in the western North Pacific. The specimens conformed to the genus Bathyraja by having the anteriormost pectoral-fin skeleton almost reaching the snout tip, and a slender unsegmented rostral cartilage. Within Bathyraja, the new species belongs to the subgenus Arctoraja (currently with four valid species) due to the relatively short tail (79-86% of disc width), high count of predorsal caudal vertebrae (more than 86), and large strong nuchal and scapular thorns. It is most similar to Bathyraja (Arctoraja) smirnovi, distributed in the Seas of Japan and Okhotsk, in having tail thorns not extending to the nuchal area, median thorns discontinuous from the nape to the tail, and no mid-dorsal thorns. However, B. sexoculata can be distinguished from B. smirnovi by the following characters: three pairs of white blotches on the dorsal disc surface (vs. blotches absent, or a pair of white or dark blotches in B. smirnovi), dark blotch around cloaca, dark bands along mid ventral line of tail (vs. dark blotch and band usually absent ventral disc surface in B. smirnovi), 86-93 predorsal caudal vertebrae (vs. 80-87 in B. smirnovi), and a unique mitochondrial DNA cytochrome c oxidase subunit I sequence. Proportional measurements, including disc width, disc length, head length, preoral length, prenarial length, internarial distance, eye diameter, and tail length, also differ between the two species. For the referential purpose, geographical variations of B. smirnovi distributed in the Seas of Japan and Okhotsk are analyzed and clarified based on morphological and genetic data. Significant morphological and genetic differences were found between local populations in the Seas of Japan and Okhotsk.


Assuntos
Rajidae , Animais , Cabeça , Ilhas , Mitocôndrias
15.
Opt Express ; 28(23): 34787-34803, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182939

RESUMO

We present a theoretical study on the measurement of photoinduced force microscopy (PiFM) for composite molecular systems. Using discrete dipole approximation, we calculate the self-consistent response electric field of the entire system, including the PiFM tip, substrate, and composite molecules. We demonstrate a higher sensitivity for PiFM measurement on resonant molecules than the previously obtained tip-sample distance dependency, z-4, owing to multifold enhancement of the localized electric field induced at the tip-substrate nanogap and molecular polarization. The enhanced localized electric field in PiFM allows high-resolution observation of forbidden optical electronic transitions in dimer molecules. We investigate the wavelength dependence of PiFM for dimer molecules, obtaining images at incident light wavelengths corresponding to the allowed and forbidden transitions. We reveal that these PiFM images drastically change with the frequency-dependent spatial structures of the localized electric field vectors and resolve different types of nanoparticles beyond the resolution for the optically allowed transitions. This study demonstrates that PiFM yields multifaceted information based on microscopic interactions between nanomaterials and light.

16.
Opt Express ; 28(10): 14980-14994, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403530

RESUMO

Light has momentum, and hence, it can move small particles. The optical tweezer, invented by Ashkin et al. [Opt. Lett. 11, 288 (1986)] is a representative application. It traps and manipulates microparticles and has led to great successes in the biosciences. Currently, optical manipulation of "nano-objects" is attracting growing attention, and new techniques have been proposed and realized. For flexible manipulation, push-pull switching [Phys. Rev. Lett. 109, 087402 (2012)] and super-resolution trapping by using the electronic resonance of nano-objects have been proposed [ACS Photonics 5, 318 (2017)]. However, regarding the "rotational operation" of nano-objects, the full potential of optical manipulation remains unknown. This study proposes mechanisms to realize rotation and direction switching of nano-objects in macroscopic and nanoscopic areas. By controlling the balance between the dissipative force and the gradient force by using optical nonlinearity, the direction of the macroscopic rotational motion of nano-objects is switched. Further, conversion between the spin angular momentum and orbital angular momentum by light scattering through localized surface plasmon resonance in metallic nano-complexes induces optical force for rotational motion in the nanoscale area. This study pieces out fundamental operations of the nanoscale optical manipulation of nanoparticles.

17.
Sci Rep ; 10(1): 3349, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098985

RESUMO

We demonstrate the size-dependent separation and permanent immobilization of DNA on plasmonic substrates by means of plasmonic optical tweezers. We found that a gold nanopyramidal dimer array enhanced the optical force exerted on the DNA, leading to permanent immobilization of the DNA on the plasmonic substrate. The immobilization was realized by a combination of the plasmon-enhanced optical force and the thermophoretic force induced by a photothermal effect of the plasmons. In this study, we applied this phenomenon to the separation and fixation of size-different DNA. During plasmon excitation, DNA strands of different sizes became permanently immobilized on the plasmonic substrate forming micro-rings of DNA. The diameter of the ring was larger for longer DNA (in base pairs). When we used plasmonic optical tweezers to trap DNA of two different lengths dissolved in solution (φx DNA (5.4 kbp) and λ-DNA (48.5 kbp), or φx DNA and T4 DNA (166 kbp)), the DNA were immobilized, creating a double micro-ring pattern. The DNA were optically separated and immobilized in the double ring, with the shorter sized DNA and the larger one forming the smaller and larger rings, respectively. This phenomenon can be quantitatively explained as being due to a combination of the plasmon-enhanced optical force and the thermophoretic force. Our plasmonic optical tweezers open up a new avenue for the separation and immobilization of DNA, foreshadowing the emergence of optical separation and fixation of biomolecules such as proteins and other ncuelic acids.


Assuntos
DNA/isolamento & purificação , Nanopartículas Metálicas/química , Pinças Ópticas , Fenômenos Físicos , DNA/química , Ouro/química , Ressonância de Plasmônio de Superfície
18.
J Chem Phys ; 151(22): 224307, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837676

RESUMO

We theoretically propose a new method for generating up-converted coherent light from two-level systems (TLSs) coupled with a plasmonic nanocavity. The emission spectrum of a TLS excited by a strong laser exhibits a triplet structure called the Mollow triplet. If the lower Mollow sideband is tuned to the cavity mode energy, population inversion of a TLS occurs. When the driving laser is abruptly truncated under this condition, an up-converted photon is emitted from the TLSs. We also predict the up-converted superfluorescence from an ensemble of TLSs as a correlation effect among the excited states of the TLSs.

19.
Sci Rep ; 9(1): 8453, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186496

RESUMO

The coherent volume of single quantum states of matter is typically smaller than that of photons by several orders of magnitude, and hence, interactions between photons and single quantum states are normally very weak. This limits the speed of radiative decay of matter states in free space. Recent efforts to speed-up radiative processes have been focused on creating a small mode volume of photons using cavity systems, or on realizing spontaneous synchronization among quantum emitters to create a dipole at the macroscopic scale, which accelerates photon emission up to a couple of hundred femtoseconds. Here, we demonstrate the 10-fs class of photoluminescence (PL) of a single quantum state in solid thin films without the use of a photo-cavity system or the spontaneous synchronization effect. Significantly, this speed can beat thermal dephasing of relevant excited states at room temperature, which is typically a couple of tens of femtoseconds. The process occurs due to the giant interaction volume between light waves and the multipole excitonic waves. This result indicates the possibility to realize photoemission processes that complete before the thermal dephasing process activates, which opens up the hidden potential of ubiquitous solids as thermal-free or extremely low-energy-loss photonic materials.

20.
Phys Rev Lett ; 122(15): 157401, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31050541

RESUMO

This study aims to reveal the full potential of ZnO as an ultrafast photofunctional material. Based on nonlocal response theory to incorporate the spatially inhomogeneous quality of the samples coupled with experimental observations of linear and nonlinear optical responses, we establish the ultrafast radiative decay of excitons in ZnO thin films that reaches the speed of excitonic dephasing at room temperature in typical semiconductors at a couple tens of femtoseconds. The consistency between the observed delay-time dependence of the transient-grating signals and the theoretical prediction reveals that the ultrafast radiative decay is due to the synergetic effects of the giant light-exciton interaction volume and the radiative coupling between multicomponent excitons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...